
MARS HUMAN EXPLORATION REFERENCE MISSION

Bret Drake NASA Johnson Space Center **Exploration Office**

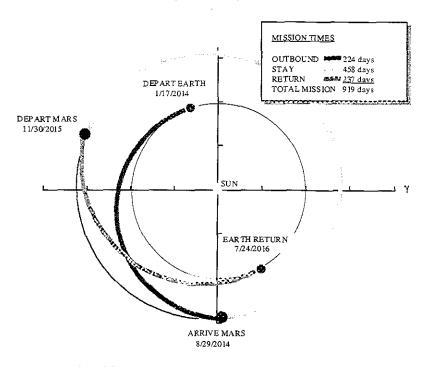
Human Space Exploration -- Next Steps

- The Opportunity An explosion of recent discoveries
 - Allan Hills Meteorite
 - **Pathfinder**
 - Clementine
- The Challenge Affordable human exploration
 - Significant reductions in cost
 - Efficient mission approaches
 - Development of leveraging technologies
 - Mars knowledge return
 - Enable a mission in early 2010's

Increase Knowledge

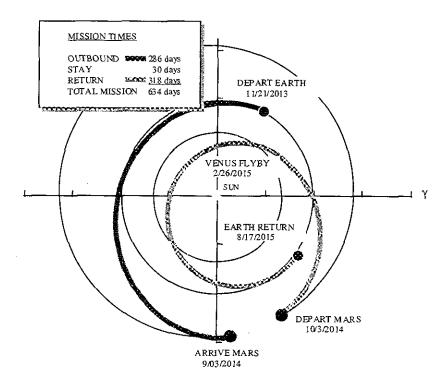
- Today's Exploration program focuses on understanding planetary and asteroid environments for what they can teach us about life on Earth
- Human capabilities will tremendously extend the scientific breadth and depth of the Exploration program
 - Sample selection, rapid analysis, and reselection
 - Operate sophisticated in-situ laboratories and observe, react to data, modify strategies, retest, verify and think
 - Repair, adjust, and control robotic science activities with no time delay
 - Access sites that are too challenging for robotic missions
 - In-situ sample screening, analysis, preservation and selection for return to Earth
 - Assessment of resources and technologies through experience

The best sensor is the human eye....
....the best computer is the human mind



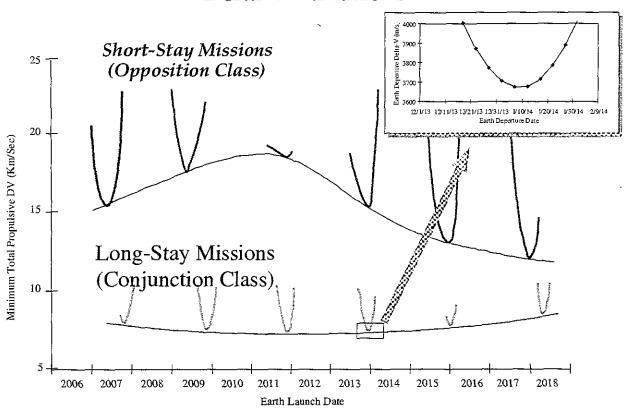
© Paramount

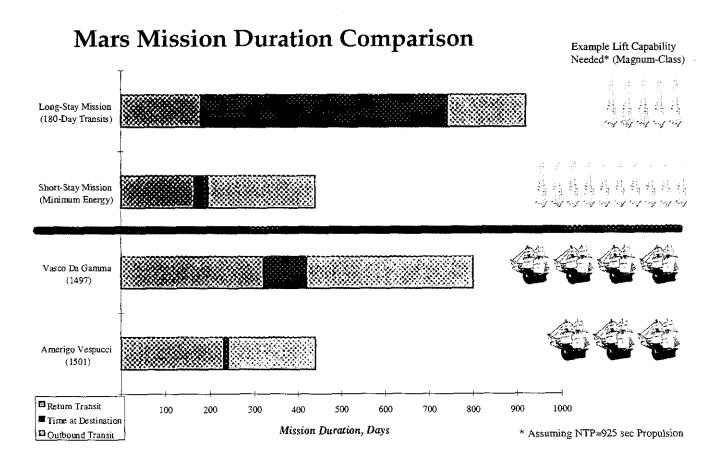
Mars Mission Strategies -- Old Paradigm


- ★ Most past Mars studies employ "Starship Enterprise" approach
 - Large "mothership" constructed in Earth orbit, travels to and from Mars orbit
 - Crew takes "shuttlecraft" to surface and explores for a short time
 - If problems occur, abort to Earth
- Basically incompatible with economical spaceflight and Mars mission objectives
 - "Mothership" requires huge propellant quantities or exotic propulsion technology
 - Complex and risky construction and integration in Earth orbit
 - Short surface stay limits mission objectives
 - "Abort to Earth" implies long duration interplanetary flight times

Mars Trajectory Classes

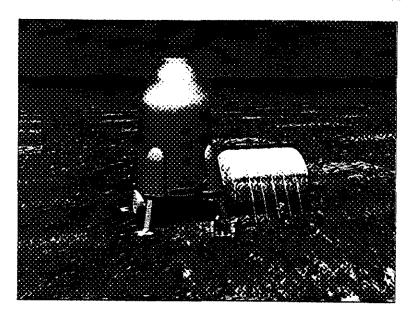
Long-Stay Missions

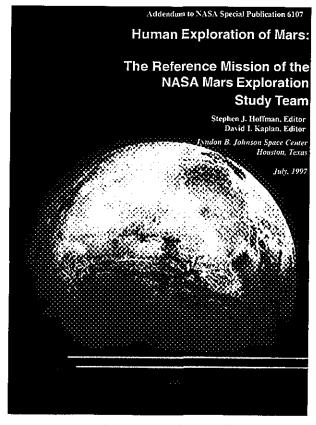

- Variations about the minimum energy mission
- Often referred to as Conjunction Class missions



Short-Stay Missions

- Variations of missions with short Mars surface stays and may include Venus swing-by
- Often referred to as Opposition Class missions

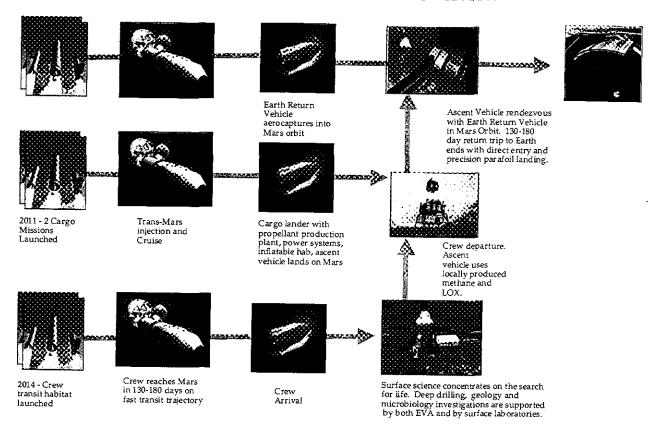

Delta-V Variations


New Approach

- Key in new paradigm is shifting focus from interplanetary spaceflight to planetary surface
 - Make Mars the safest place in the solar system
 - Pre-deploy assets to Mars, ensure operational before crew departs
- Planetary departure / return windows can allow critical operational advantages
 - Pre-deployed assets for "next" crew available as redundant elements for "current" crew
- Redundancy through "forward deployment" rather than "abort to Earth"

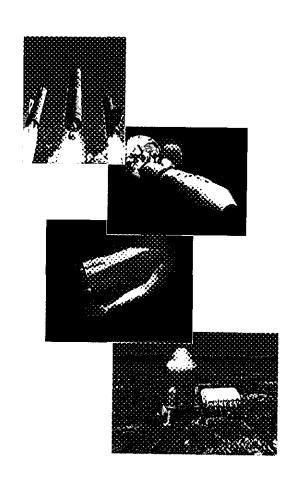
Mass Reduction Strategies

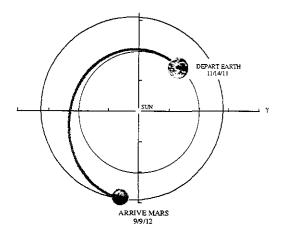
- Major component of economical human esploration of Mars is through the reduction of mass. Current mass reductions achieved by:
 - Utilizing energy-efficient trajectories to pre-deploy mission assets
 - Proper application of advanced technologies
 - 3. Achieving proper tradeoffs of mass and power
 - Advanced Space Propulsion
 - Utilizing locally produced propellants (In-Situ Resource Utilization)
 - Employing advanced (bioregenerative) life support systems to close air, water, and potentially food loops



www-sn.jsc.nasa.gov/marsref/

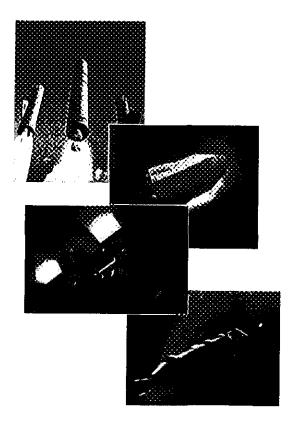
Mars Reference Mission


- **Exploration mission planners** maintain "Reference Mission"
- Represents current "best" strategy for human Mars missions
- Purpose is to serve as benchmark against which competing architectures can be measured
- Constantly updated as we
- Probably does not represent the way we will end up going to Mars


Reference Mission Scenario Overview

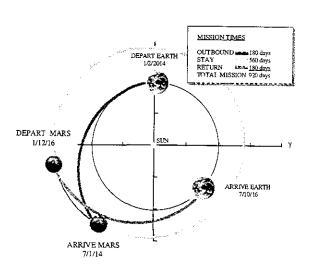
Forward Deployment Strategy

- Twenty-six months prior to crew departure for Mars, predeploy:
 - Mars-Earth transit vehicle to Mars orbit
 - Mars ascent vehicle and exploration gear to Martian surface
 - Mars science lab to Martian surface
- Crew travels to Mars on "fast" (six month) trajectory
 - Reduces risks associated with zero-g, radiation
 - Land in transit habitat which becomes part of Mars infrastructure
 - Sufficient habitation and exploration resources for 18 month stay



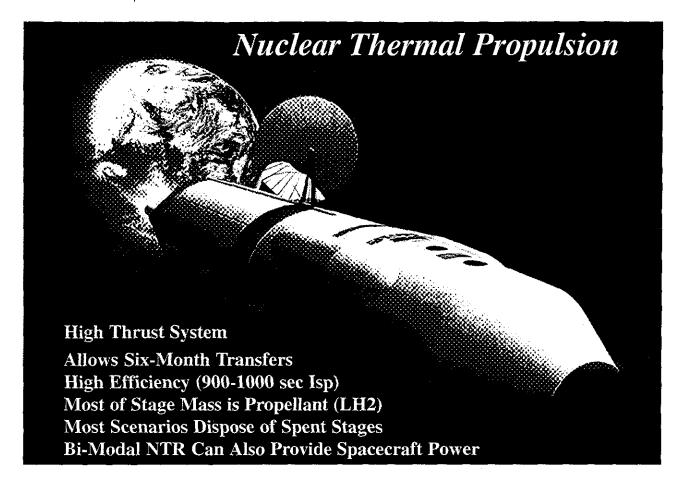
Piloted Mission

Piloted Mission (2014)


- Leave Earth January 2, 2014 TMI DV = 3680 m/s
- 180-day outbound trip
- Arrive at Mars July 1, 2014
- Aerocapture into 1-Sol orbit
- 560-day stay on the Martian surface
- Leave Mars January 12, 2016
- TEI DV = 1080 m/s
- 180-day inbound trip
- Arrive at Earth July 10, 2016
- Direct entry to Earth's surface

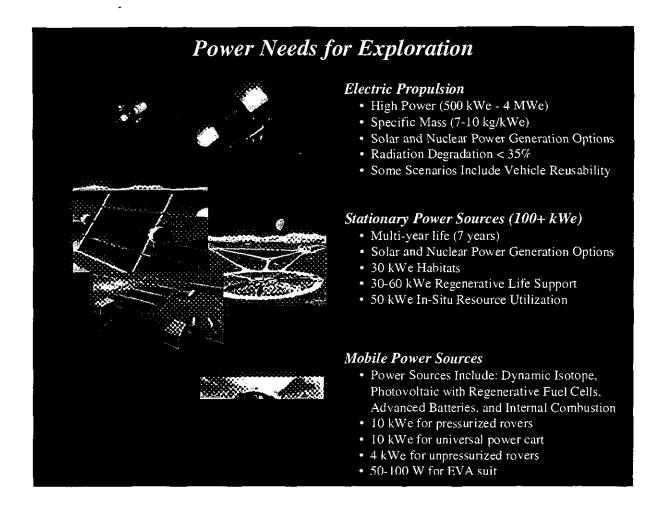
Cargo Missions

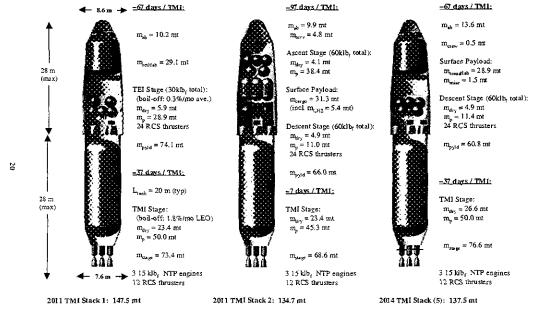
Two Cargo Missions (2011)


- Leave Earth November 4, 2011 TMI DV = 3590 m/s
- 310-day outbound trip
- Arrive at Mars September 9, 2012
- Aerocapture into 1-Sol orbit
- Descent vehicle descends to surface
- Return vehicle remains in orbit

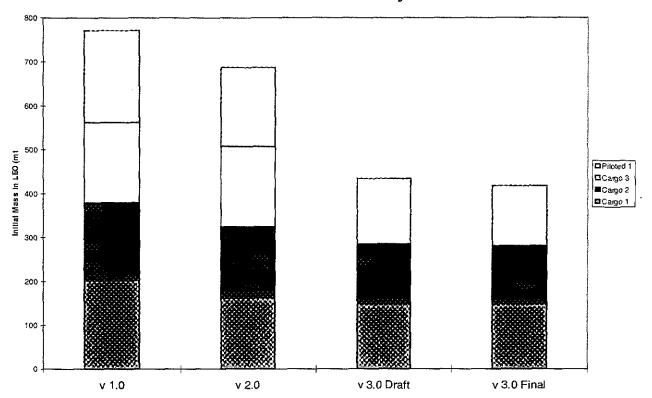
Space Transportation

Examining all mission phases for cost-effective transportation options and additional customers

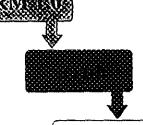

- Earth-to-Orbit
 - Second generation Shuttle-derived
 - Other potential customers DoD Payloads, Next Generation Space Telescope
- Earth Orbit to Mars Orbit
 - **Electric Propulsion**
 - **Nuclear Thermal Propulsion**
 - Other potential customers GEO payloads, Solar Power Satellites?
- Mars Orbit Injection
 - Aerocapture
- Ascent from Martian Surface
 - In situ propellant production



Mars In Situ Resources


- Traditional exploration architectures advocate investigation of Martian resources during "early" human missions
 - Idea is to reduce cost of subsequent missions
- Relying upon in situ resources from the outset presents some advantages
 - Producing ascent propellant greatly reduces required
 Earth launch mass
 - Producing caches of water and oxygen provides backup to life support systems
 - Can reduce level of closure (and expense) of systems
 - Technical risk can be mitigated by robotic tests of Martian resource extraction
 - Could also make sense as a sample return strategy

Launch Packaging for Version 3.0


DRM Mass History

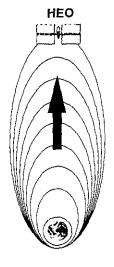
Version 3.0 Mass Summary

Flight 1: ERV	Reference Version 1.0		Final Version 3.0	
Earth Return Vehicle	56	mt	29	mt
TEI Stage	5	mt	6	mt
TEI Propeliant	52	mt	29	mt
Aerobrake	17	mt	10	mt
TMI Stage	29	mt	23	mt
TMI Propellant	86	mt	50	mt
TOTAL MILEO	246	mt	147	mt
Flight 2: MAV				
Ascent Capsule	6	mt	5	mt
Ascent Stage	3	mt	4	mt
Payload	48	mt	31	mt
Descent Stage	5	mt	4	mt
Descent Propellant	12	mt	11	mt
Aerobrake	17	mt	10	mt
TMI Stage	29	mt	23	mt
TMI Propellant	86	mt	45	mt
TOTAL MLEO	205	mt	134	mt
Flight 3: Piloted				
Habitat	53	mt	29	mt
Payload & Crew	2	mt	. 2	mt
Descent Stage	5	mt	5	mt
Descent Propellant	12	rnt	11	mt
Aerobrake	17	mt	14	mt
TMI Stage & Shielding	32	mt	27	mt
TMI Propellant	86	mt	50	mt
TOTAL IMLEO	208	mt	137	mt

Major Mission Variations to DRM 1.0

- · Magnum class launch vehicle
- · Improved mass estimates
- · Integrated habitat/aerobrake

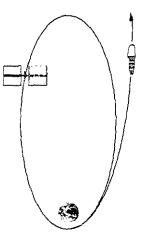
- Improved structural efficiencies (surface inflatables)
- · Eliminated initial habitation flight
- Improved life support system estimates

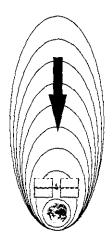


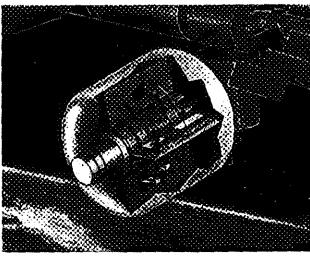
- Improved Earth departure scenario
 - · Commercial industry potential
 - · Reduced architecture mass
 - · Aerobrake concept for large volumes


- Improved architecture masses
- Refined cost estimates
- Conceptual vehicle layouts

Electric Propulsion Low Thrust System High Efficiency (2000-4000 sec Isp) Both Solar and Nuclear Power Generation Options Trajectory Spiral from Low-Earth Orbit to Departure Orbit Requires Separate Crew Delivery Vehicle Mission Options Include Reusability


Electric Propulsion Earth Departure


Electric Propulsion (EP) space tug performs low-thrust transfer for Mars-bound cargo to High Earth Orbit (many months transfer)


Crew delivered in "small" chemically-propelled transfer vehicle - X-38 derived (few days rendezvous time)

Remainder of trans-Mars injection performed by chemically-propelled system

Space tug returns for refueling and next assignment (faster or more efficient return since no payload present)

TransHab at ISS

Mars TransHab

- JSC Engineering
 Directorate investigated
 the use of inflatable
 structures for human
 Mars missions
- Significant improvement in:
 - Structural efficiencies
 - Advanced life support system design
- Advancements incorporated into Mars mission definition (surface)

The Decision to Proceed

Enable an affordable Mission to Mars